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Introduction to Differential Equations
At the highest level, differential equations relate the change in one quantity with the change 
of another quantity.  Many well-known basic physical properties are expressed in terms of 
differential equations, such as Newton’s second law (F = ma).  Outside of physics, there are 
also applications, such as predator-prey population relationships in a habitat.

         
Vector fields and phase portraits for various systems of linear differential equations

Though differential equations can be expressed in terms of many functions such as 
polynomials and transcendentals, we will primarily be interested in linear differential 
equations for the purposes of this exploration.

Notes on the number e
There are several convenient properties inherent to applications and instances of the 
number e, Euler’s number.  This irrational number, approximately 2.71828..., arises in 
frequently in descriptions of natural functions and systems.  
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There are several methods for characterizing this number, but one of particular relevance to 
this exploration is the form of a sum of an infinite series:

This definition for e should look familiar after seeing the series definition for eAt:

From this we can note that the first term in the summation will always be 1.

Patterns in eAt
Given these similarities, it is likely we can find a way to define the entries to the matrix eAt 
in terms of et.  Indeed, in some cases, the series converges symbolically.  For example, given 
the lower-triangular A matrix, 

we find that the approximation sum for eAt  converges symbolically to

after just 2 iterations of the sum.  




0 0 0
2 0 0
−1 3 0








1 0 0
2t 1 0

−t + 3t2 3t 1




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However, this nicety is far from universal.  Even something that looks as nice as a real and 
diagonally populated matrix, such as 

can end up with a messy series approximation.  After just four iterations through a Maple 
program for our series approximation, we end up with the matrix

which has been simplified by Maple for display.

It seems apparent that the series is unlikely to converge symbolically.  However, with some 
examination, we note that the terms of the series in each position are deeply related to the 
value in that position in the original matrix.  It is also worthwhile to note that the 
eigenvalues of a diagonal matrix turn out to be the values populating the diagonal:  in this 
case, -4, 3, and 7.  We then examine the terms of the aforementioned infinite series 
presentation of e, and it becomes clear that the actual value populating the exact solution 
matrix is

which can be generalized, for this nice type of diagonally populated matrix at least, to

which is very nice indeed.  




−4 0 0
0 3 0
0 0 7








1− 4t + 8t2 − 32

3 t3 + 32
3 t4 0 0

0 1 + 3t + 9
2 t2 + 9

2 t3 + 27
8 t4 0

0 0 1 + 7t + 49
2 t2 + 343

6 t3 + 2401
24 t4








e−4t 0 0

0 e3t 0
0 0 e7t








eλ1t 0 0
0 eλ2t 0
0 0 eλ3t




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A special case:  Diagonalizable Matrices
We have made note of the nice solution form for a diagonal matrix.  Can we generalize this 
finding further?  It turns out that we can.  One might recall that when a matrix is 
diagonalizable, the eigenvalues of the original matrix and the diagonalized matrix are the 
same.  Therefore, we could reasonably expect that the solution to eAt for a diagonalizable 
matrix to be the same as the solution for the associated diagonal matrix.  Let’s take a look at 
a more “average” matrix such as 

For the sake of brevity:  The characteristic polynomial for this matrix is x3 - 3x2 + x - 3; the 
eigenvalues for this matrix are therefore λ = 3, i, or -i.  This seems a bit alarming at first–after 
all, this is another anonymous matrix with all real entires, and we saw a negative entry in our 
last example.  If we try using the summation definition to find eAt, we don’t see a simple 
relation to the original eigenvalues like we did with the diagonal matrix. 

However, let’s examine the eigenvectors from our previous, nicer (diagonal) matrix.  If we 
place the eigenvectors into a matrix, with row 1 being λ1’s eigenvector and so forth, we have 
the following matrix:

In other words–the identity matrix.  This suggests that having a diagonal matrix is desirable, 
so maybe we should try diagonalizing our matrix.  




0 1 0
−1 0 0
0 0 3








1 0 0
0 1 0
0 0 1




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We already know our eigenvalues, as stated above - λ = 3, i, or -i.  We have a diagonalizable 
matrix since we have 3 distinct eigenvalues for our 3-dimensional matrix.  Therefore, our D 
for the diagonalization process will look something like 

and the associated P,

So, our diagonalized matrix allows us to write the equality

which could be nicer, supposing we could isolate the diagonal part, as this would enable a 
very fast calculation of the interior matrix based on our earlier discovered general solution 
for diagonal matrices.  

Without implying any triviality to the actual calculations involved with computing the above 
matrix products, we present the solution:

D =




i 0 0
0 −i 0
0 0 3





P =




−i i 0
1 1 0
0 0 1





eAt = ePDP−1t

ePDP−1t = PeDtP−1




eit

2 + e−it

2
−ieit

2 + ie−it

2 0
ieit

2 − ie−it

2
eit

2 + e−it

2 0
0 0 e3t




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Differentiation of solutions to eAt
A handy property of enx is that d/dx is always nenx.  One might not immediately expect such 
a property to carry over to the world of the matrix exponential, but it turns out that in the 
way we expect, 

which we can prove using the infinite series definition of eAt.  When we differentiate the 
kth term of the sequence, we note that 

Because the differentiation of the sum is equivalent to the differentiation of the interior ex-
pressions,

Because the first term series to be differentiated is always a constant, we are able to shift the 
summation index, k, forward to 1 without affecting the sum because differentiating a con-
stant always yields zero.  We can substitute k’ = k - 1 to find that

which was to be demonstrated .

d

dt
eAt = AeAt

d

dt

Ak

(k)!
tk = k

(A)Ak−1

(k)!
tk−1 = A

Ak−1

(k − 1)!
tk−1

d

dt

∞∑

k=0

Ak

k!
tk =

∞∑

k=0

d

dt

Ak

k!
tk =

∞∑

k=1

A
Ak−1

(k − 1)!
tk−1 = A

∞∑

k=1

Ak−1

(k − 1)!
tk−1

A
∞∑

k=1

Ak−1

(k − 1)!
tk−1 = A

∞∑

k′=0

Ak′

(k′)!
tk

′
= AeAt
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Properties of solutions to eAt
We have seen before the zero vector, 0, as a vector where all elements in the vector, however 
numerous, are zero.  A similar notion of zero can be established for matrices.  Intuitively, 
one expects that such a zero matrix would be populated entirely by zeros, and indeed, this is 
the definition we will use.  Likewise, we will use the same bold zero to denote the zero 
matrix symbolically.

Under certain conditions, the solution to 

will be our zero matrix, 0.  We call such systems stable systems.  In another facet, the 
solutions to all components of such systems given by t will decay to 0 over time.  When can 
we expect such systems to be stable?  Clearly, the determination of this will rest entirely on 
our variable A matrix, but how?  

We’ve seen the role the eigenvalues of a matrix play in the solution to eAt - elements in the 
solution matrix follow the pattern eλt, so we should examine what values of λ will drive the 
terms towards zero.  We must also be mindful of the fact that our eigenvalues can be 
imaginary.  This being the case, we need to use the definition of the exponential in the 
complex plane.  Specifically, 

where c is the real component and id is the imaginary component.  Using what we know 
about the exponential function in the real plane–specifically,

we can show, since the sine and cosine of d do not approach a large positive or negative 
value, that 

which would dictate that any c, and therefore any λ, less than zero will induce a zero 
solution and therefore a zero entry in the solution matrix for eλt in the position(s) 
corresponding to that λ .  

lim
t→∞

eAt

e(c+id) = ec(cos d + i sin d)

lim
c→−∞

ec = 0

lim
c→−∞

ec(cos d + i sin d) = 0(cos d + i sin d) = 0

Linear Systems of Differential Equations
 8



Thusly, any diagonal or diagonalizable matrix having the property 

will be stable.

It is then intuitively expected that a system will not be stable (will not tend towards the zero 
matrix as t approaches infinity) if the entries in the solution matrix do not tend towards 
zero.  We need only show a single non-zero entry will exist in the solution matrix if one of 
the eigenvalues is greater than or equal to zero.  For the case of a diagonalizable matrix this 
is relatively simple - we know the entry eλt will be present at least once in the solution 
matrix, and as long as λ is a constant greater than zero, 

and we will therefore have at least one non-zero entry in the solution matrix.

Proving this in general involves a bit more cleverness.  We must utilize the fact that 

where the vector v is the eigenvector associated with the positive λ.  From this it is clear 
that if λ is greater than or equal to zero, eλt will approach something non-zero:  indeed, 
infinity or one.  This implies that eAt will also approach a non-zero matrix, and is therefore 
not stable.

Limitations of applicability
There are, however, times where we cannot use these simplifying rules.  Let’s examine a sys-
tem of differential equations:

∀λ ∈ eigenvalues(A) : λ < 0

lim
t→∞

eλt =∞

eAt!v = eλt!v

dx

dt
= y

dy

dt
= αx− 2y
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We see that the A matrix,

has the characteristic polynomial 

We are unable to factor this, but we can still find our eigenvalues with the quadratic for-
mula:

We must constrain our α such that our eigenvalues are less than zero to ensure the resultant 
system is stable, as shown in the previous section.  However, border cases tend to cause is-
sues.  We have already eliminated 0 in our last section, but what of the case where α = -1?  In 
this case, our quadratic formula’s two answers would be -1 + 0 and -1 - 0, which are clearly 
equal.  Therefore, we would have just one distinct eigenvalue:  -1.  Because our matrix is 
two-dimensional, this would imply that our eigenvalue has multiplicity greater than one, 
which further implies that the matrix would not be diagonalizable for this case.  Not having 
a diagonalizable matrix would prevent us from using the methods developed in the section 
on the special case of the exponential of diagonalizable matrices to find a solution to eAt.  
Therefore, if we wish to employ the efficient methods we now understand for diagonalizable 
matrices, the constraint on α would be 

with any real α value in the range producing a stable exponential, eAt.

[
0 1
α −2

]

λ2 + 2λ− α

−2±
√

4 + 4α

2
= −1±

√
1 + α

α < 0, α != −1
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APPENDIX/ACKNOWLEDGEMENTS
From pages 3/4:  A Maple program to find the matrix after n terms of the summation:

with(LinearAlgebra):
eAt := proc (A, numIters) local k, currentTerm, fullSequence, prevSequence;
fullSequence := 0:
prevSequence := 0: 
for k from 0 to numIters do 
  currentTerm := A^k*t^k/factorial(k);
  prevSequence := fullSequence; 
  fullSequence := prevSequence+currentTerm; 
end do;
end proc;

From page 6:  The simplification of the exponential of the diagonalizable matrix into 
something more workable, 

is attributable entirely to the text author’s cleverness.

From cover and page 2:  Plots created using Mac OS X 10.5 Grapher, using example 
systems of linear differential equations from example sheet “First order homogeneous linear 
systems of differential equations with constant coefficients” by V. Naibo, Kansas State 
University.  Available via Internet.

A copy of the Maple workbook used in several of the computations in this document is 
available at http://homepage.mac.com/kiel_oleson/math314exp.mw.

UNIX® is a registered trademark of AT&T.

This document was typeset (open Pages.app; open LaTeXiT.app) in Hoefler Text, 
Century Schoolbook, and Garamond by the author, using an HP DeskJet 3840 
inkjettypesetter and an Apple MA895 running the 6th edition of the Mac OS X operating 
system.

ePDP−1t = PeDtP−1
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